
International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 422
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Efficient Power Management Technique Of
Multicore Architecture For Real Time Visual Data

Alan Janson, Vinayak Bhogan, Akash Name, Julie Dsouza

Abstract— With increasing need of higher computational capacity and speed for visual data such as images & videos, Multicore
computing technology has become a viable solution. Graphite multicore architecture simulator provides a necessary parallel computing
environment not only for computational test but also optimized modelling. This paper discusses about the efficient model for multi-core
architecture based on image processing algorithm incorporating both Dynamic Voltage Frequency Scaling (DVFS) & concept of
heterogeneity.

Index Terms— Graphite Multicore Processor, Dynamic Voltage & Frequency Scaling [DVFS], Heterogeneity, Multithreading, Image
Averaging Filter, Parallel Computation, Power Management.

——————————  —————————

1. INTRODUCTION

Images & video data is core of visual multimedia. Being
considerably large data, higher computational speed is a
crucial factor. Fast processing response is the major
requirement in many real-time processing applications.
Processors have become more powerful, processing has
shifted towards digital domain, although parallel computing
seems to be an ideal solution but actual hardware has much
more complex factors like Power, area & memory resources
are difficult to realize and implement. This basic issue of
implementation of parallel computing algorithms can be
handled effectively by Multicore architecture.

Multicore processors have a higher edge on single core
processors in terms of various parameters like processing
speed and computational time. The increase number of counts
achieves the reasonable performance of the programming
models for the need of multi-thread working in union with
multicore. But as we increase the number of cores the power
for each core also increases resulting in large power
utilization. Power consumption is one of the major issues that
needs to be resolved for efficient implementation of multicore
architecture. With increasing performance minimizing the
power consumption is crucial. Thus on architectural basis, we
propose a new model based on both DVFS & heterogeneity
which can be incorporated to reduce power consumption
considerably while still maintaining overall performance drop
under tolerable limits[3][4][6].

2. ARCHITECTURE AND BACKGROUND
2.1 Conventional Multicore Design

Fig. 1 Conventional Multicore Architecture.

This Fig. 1 shows the basic conventional multicore model.

It contains homogeneous core which are same in size and
configuration. This homogeneous core processes data
irrespective of their variable complexity with similar
computational processing. The supply voltage and operating
frequency are also similar throughout the core. As the number
of core increases the amount of power also increase resulting
in large power consumption and heat dissipation[9][10].

Different schemes to reduce power are:

1) Dynamic Voltage & Frequency Scaling [DVFS]

DVFS is one of the common power management
techniques. Complex workload need high speed and
supply voltage for computation compared to simple

————————————————
• Alan Janson, EXTC Engineer from Mumbai University, India

E-mail: alanjannson@gmail.com
• Vinayak Bhogan, EXTC Engineer from Mumbai University, India

E-mail: vinayakfrom25593@gmail.com
• Akash Name, EXTC Engineer from Mumbai University, India

E-mail: akash.name07@gmail.com
• Julie Dsouza, EXTC Engineer from Mumbai University, India

E-mail: julie.dsouza19@gmail.com

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 423
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

instruction. The overall power [P] mainly depends on
supply voltage [V] and operating frequency [F] which is
given as P = CV2F. Therefore by scaling voltage and
frequency with respect to workload, power can be
reduced.

Multicore offers individual DVFS for each core, this is
referred to as per-core DVFS (PC-DVFS). Per-core DVFS
has extended flexibility in controlling power. Power has
its own primary performance problem in high-
performance computing (HPC). Thus reducing power
consumption, lead to significant reduction in the energy
required for a computation, particularly for memory-
bound workloads[8].

2) Heterogeneity

Heterogeneity is the technique in which the

configurations of the processing cores are modified
based on the task incorporated. Increase in core size
results in large power dissipation. Therefore using
heterogeneous core, the core configuration are modified
according to the given complex or simple task resulting
in comparatively low power consumption.

Heterogeneous multi-core processor architecture can
expand the features for powerful computing to provide
system acceleration. They currently offer an efficient and
powerful integrated processor moreover it also supports
data parallelism, bringing several innovative changes in
functionality of the system[2][7][5].

2.2 Modified Design

Fig. 2 Modified Architecture.

This Fig. 2 illustrates the modified model using DVFS

and heterogeneity technique together for the efficient power

management of the processing unit. Parameters like size of the
processing core, supply voltage and operating frequency are
made flexible in order to minimize power dissipation
compared with conventional multicore design. In order to
implement this modified multicore design, graphite multicore
architecture is reliable and efficient for implementation.

3. IMPLEMENTATION
3.1 Simulation Environment

Fig.3 Graphite Architecture.

Graphite is an open source API (application program
interface) used to explicitly direct multithreaded, shared
memory parallelism, for distributed simulator infrastructure
designed to enable rapid high-level architectural evaluation
and software development for future multicore architectures.
Graphite multicore architecture is used on multicore
simulator, designed to boost the power and process in
parallelism for multicore engine. It provides both functional
and performance modelling for cores, on-chip networks and
memory subsystems including cache hierarchies with full
cache coherence.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 424
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 4 Target Architecture.

This Fig. 4 illustrates the various components present in
the target architecture. This target tiled multicore architecture
is a thread executing units which are based on multithreaded
application. There are various target architecture components
such as:

1) Tiles: It contain a processing core, network model
and memory components.

2) Core: Basic processing unit for modelling
multithreaded application.

3) Memory model: Flexible model responsible for the
memory subsystem, which is composed of caches
and DRAM at different levels.

4) Network model: Networking model based on
routing of packets over the on-chip network and
accounts for various delays encountered due to
contention and routing overheads[1].

3.2 Algorithm

A. IMAGE AVERAGING FILTER
Image filtering is one of the most commonly used

techniques of image processing & enhancement.
Neighbourhood processing is prominent concept in image
that enables us to extract & modify the image itself as per the
requirement.

Image filtering is based on mathematical concept of 2D
spatial convolution that is carried out on pixel intensities.
Average filtering is one of the most commonly used filters
that is utilized to add blurring effect on image as well as to
enhance the edge detection.

Fig. 5 Two Dimensional Convolution.

Fig. 5 explains clearly about how the filtering operation is

carried out in spatial domain. For mask of size m x n the
averaging filter technique can be represented mathematically
as,

𝑔(𝑥, 𝑦) = � � 𝑘(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)
𝑏

𝑡 = −𝑏

𝑎

𝑠 = −𝑎

Here, m = 2a + 1 & n = 2b+1 with a and b as positive integers.
K(s,t) = Averaging kernel matrix
Average filter kernel of size m x n can be represented as,

𝐾𝑁 = 1
𝑚𝑛

�
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

�
𝑚 𝑥 𝑛

It is assumed that the kernel coefficient k(0,0) is aligned with
centre of the pixel under consideration as.

a. First at the edges of image zero padding is done then
appropriate mask is applied for each & every pixel in
image

b. 2D convolution is achieved by multiplication &
addition of weighted neighbourhood values and
value of pixel under consideration is replaced by
output of the convolution.

c. Mask is then sheeted row-wise or column-wise and
filtering is carried out by processing same steps as 1
and 2 over entire image.

B. IMAGE AVERAGING ALGORITHM

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 425
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 6 Image Filtering Algorithm.

 This Fig. 6 illustrates the image averaging filtering
algorithm as an application on graphite multicore
architecture. There are 2 different size images considered such
as 786x786 and 1024x1024 for image averaging application.
Each image is divided into row by row equivalent to the
number of threads allocated. Each thread is given to each core
for processing and is retransformed into image with
averaging. The process can be explained below

a. Read an image.
b. Divide image into N number of threads.
c. Distribute these threads into the cores. Cores are

generated corresponding to the amount of threads.
Each thread is responsible for processing included in
its core

d. Threads are processed by applying average filtering
to them.

e. These Processed threads are given to thread barrier
for the reconstruction of the image.

f. Reconstructed image is written in the memory.

C. Implementation in Graphite

This Fig 7 illustrates the graphite multicore architecture
while executing image average filtering algorithm based on
the modified design that is combining DVFS and
heterogeneity. The executions on graphite multicore in
various phases are as follows:

Fig. 7 Graphite Implementation.

1) The execution starts with the main core where the

image is read. Here the supply voltage and operating
frequency is high. The slave cores are inactive.

2) At the time of filtering, the slave cores become active.
The voltage and frequency are made less with the
slave cores having half the size of the main core
because the processing part in comparatively less.

3) After filtering, the slave cores become inactive. The
image is write back and the main core stops
execution.

4. RESULTS
Results are generated based on Graphite simulation with

following assumptions:

• Infinite DRAM storage
• Negligible DRAM access latency
• Negligible latency during core switching ON or OFF
• Negligible loss of power in connecting network
• Latency while switching voltage & frequency is

negligible.
• Completion time for program is assumed to be equal

to maximum time taken by core to complete given
task

Following specifications are maintained while performing

simulation:
• Technology node – 45nm
• Temperature - 300 K
• Maximum operating frequency - 2.0 GHz
• On chip voltage regulator separate for each tile.
• Range of number of cores used - 2 to 32

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 426
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

For performance analysis of modified architecture basic
parameters that are observed are processing time & power
consumed by entire architecture. Processing time is direct
measure of performance while power consumed represents
power efficiency of system.

Variations of both parameters that is Processing time &
power with respect to change in number of cores used with
different frequencies and different images. Following images
are considered for performance analysis.

Fig. 8.1 Windmill [Size: 786x786].

Fig. 8.2 Boat [Size: 1024x1024].

Two scenarios are considered while making simulative
analysis.

1) Normal scenario that Describes execution under
following specification :

• All executing cores are equal i.e. having same
operating frequency of 1GHz

• Same cache size viz.
 L1 I-cache size = 16 KB
 L2 D-cache size = 32 KB
 L2-cache size = 512 KB

2) Modified scenario that describes execution under

following specification
• Only main core remains as it is & operating at

frequency fs = 1Ghz
• Slave cores operating at frequency fs =0.65 GHz

or fs=0.77 GHz
• Size of slave cache

 L1 I-cache size =16 KB
 L2 D-cache size =16 KB
 L2-cache size =256 KB

A. Following graphs represents time & power variations

with respect to number of cores used for different images
& frequencies.

1) For Windmill Image

• Power & Time graph at slave frequency fs=0.77 GHz

Fig. 9.1 Power Dissipated Vs Cores for Windmill Image at fs = 0.77.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 427
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 9.2 Processing time Vs Cores for Windmill Image at fs = 0.77.

• Power & Time graph at slave frequency fs=0.65 GHz.

Fig. 10.1 Power Dissipated Vs Cores for Windmill Image at fs = 0.65.

Fig. 10.2 Processing time Vs Cores for Windmill Image at fs = 0.65.

2) For Boat Image

• Power & Time graph at slave frequency fs=0.77 GHz

Fig. 11.1 Power Dissipated Vs Cores for Boat Image at fs = 0.77.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 428
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 11.2 Processing time Vs Cores for Boat Image at fs = 0.77.

• Power & Time graph at slave frequency fs=0.65 GHz

Fig. 12.1 Power Dissipated Vs Cores for Boat Image at fs = 0.65.

Fig. 12.2 Processing time Vs Cores for Boat Image at fs = 0.65.

B. Comparing all statistical data with simulation under
normal execution & following graphs represent
percentage variation in parameters as compared to
Normal execution.

1) For Windmill image

• At Slave Frequency fs = 0.77 GHz.

Fig. 13.1 Percentage variation Vs Cores for Windmill Image.

• At Slave Frequency fs = 0.65 GHz

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 429
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 13.2 Percentage variation Vs Cores for Windmill Image.

2) For Boat Image

• At Slave Frequency fs = 0.77 GHz

Fig. 14.1 Percentage variation Vs Cores for Boat Image.

• At Slave Frequency fs = 0.65 GHz

Fig. 14.2 Percentage variation Vs Cores for Boat Image.

5. CONCLUSION
Conclusions are drawn on basis of following perspective:

1) Effect of Computational load: The performance of
multicore architecture is completely dependent on the
computation load only. Contents of data to be processed
becomes irrelevant as simulation computes same
resource utilization for different data of similar
computational load

2) Processing time: Exponential decrease in processing
time is observed as number of processing cores
increases. Whereas with decrease in operating
frequency, it is evident that processing time also
increases by smaller extent.

3) Power consumption: There is linear increase in power as
we increase number of cores. Whereas with decrease in
operating frequency of slave cores power reduces by
great extent.

4) Multicore perspective: With architecture of small
number of cores, modified technique shows
deterioration in performance. But when it comes to
many-core architecture extensive power savings upto
20% can be achieved while allowing only 5% tolerable
loss of performance (increase in processing time).

ACKNOWLEDGMENT

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 8,August-2014 430
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The authors would like to thank the reviewers for helpful
feedback George Kurian and George Bezerra (CSAIL, MIT) for
significant help with the simulation tools and for helpful
discussions. We would also thank Carbon Research Group for
their resources.

REFERENCES
[1] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C.

Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in Proceedings of the International
Symposium on High Performance Computer Architecture, 2010, pp.
1–12.

[2] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,
Norman P. Jouppi, Keith I. Farkas, “Single-ISA Heterogeneous Multi-
Core Architectures for Multithreaded Workload Performance,” In
Proceedings of the 31st International Symposium on Computer
Architecture, June, 2004.

[3] Oscar Almer, Igor Bohm, Tobias Edler von Koch, Bjorn Franke,
Stephen Kyle, Volker Seeker, Christopher Thompson, and Nigel
Topham, “Scalable Multi-Core Simulation Using Parallel Dynamic Binary
Translation,” Embedded Computer Systems (SAMOS), 2011
International Conference on 2011 , Page 190 – 199

[4] Lis M, Keun Sup Shim, Myong Hyon Cho, Devadas S, “Memory
coherence in the age of multicores,” Computer Design (ICCD), 2011
IEEE 29th International Conference on pages 1 – 8

[5] Calcado, F. ; List Embedded Real Lime Syst. Lab., CEA, Gif-Sur-
Yvette ; Louise, S. ; David, V. ; Merigot, A.” Efficient Use of Processing
Cores on Heterogeneous Multicore Architecture.” Complex, Intelligent
and Software Intensive Systems, 2009. CISIS '09,. International
Conference.

[6] Ung Ho Ahn, Sheng Li, Seongil O, Jouppi, N.P, “McSimA: A
manycore simulator with application-level simulation and detailed
microarchitecture modelling,” Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on pages: 74
– 85

[7] Saripalli V ,Guangyu Sun, Mishra A, Yuan Xie, Datta S, Narayanan V,
“Exploiting Heterogeneity for Energy Efficiency in Chip Multiprocessors,”
Emerging and Selected Topics in Circuits and Systems, IEEE Journal
on (Volume:1 , Issue: 2)

[8] Jungseob Lee ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin -
Madison, Madison, WI, USA ; Nam Sung Kim “Optimizing
throughput of power- and thermal-constrained multicore processors using
DVFS and per-core power-gating.” Design Automation Conference,
2009. DAC '09. 46th ACM/IEEE.

[9] Kumar R, Zyuban V, Tullsen, “Interconnections in multi-core
architectures: understanding mechanisms, overheads and
scaling”, Computer Architecture, 2005. ISCA '05. Proceedings. 32nd
International Symposium on 4-8 June 2005 ,408 – 419

[10] Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C,
“Evaluating MapReduce for Multi-core and Multiprocessor
Systems,” High Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on 10-14 Feb. 2007 , 13 - 24

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036614
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036614
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Calcado,%20F..QT.&searchWithin=p_Author_Ids:37317901000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Louise,%20S..QT.&searchWithin=p_Author_Ids:37317908700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.David,%20V..QT.&searchWithin=p_Author_Ids:37317910400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Merigot,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066710
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066710
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066710
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jungseob%20Lee.QT.&searchWithin=p_Author_Ids:37384475200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Nam%20Sung%20Kim.QT.&searchWithin=p_Author_Ids:37404957300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5209519
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5209519
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9793
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9793
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4147635
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4147635

	[8] Jungseob Lee ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin - Madison, Madison, WI, USA ; Nam Sung Kim “Optimizing throughput of power- and thermal-constrained multicore processors using DVFS and per-core power-gating.” Design Automation Co...

