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Abstract— With increasing need of higher computational capacity and speed for visual data such as images & videos, Multicore 
computing technology has become a viable solution. Graphite multicore architecture simulator provides a necessary parallel computing 
environment not only for computational test but also optimized modelling. This paper discusses about the efficient model for multi-core 
architecture based on image processing algorithm incorporating both Dynamic Voltage Frequency Scaling (DVFS) & concept of 
heterogeneity. 

Index Terms—  Graphite Multicore Processor, Dynamic Voltage & Frequency Scaling [DVFS], Heterogeneity, Multithreading, Image 
Averaging Filter, Parallel Computation, Power Management.   

——————————      —————————
 
1.  INTRODUCTION 

Images & video data is core of visual multimedia. Being 
considerably large data, higher computational speed is a 
crucial factor. Fast processing response is the major 
requirement in many real-time processing applications. 
Processors have become more powerful, processing has 
shifted towards digital domain, although parallel computing 
seems to be an ideal solution but actual hardware has much 
more complex factors like Power, area & memory resources 
are difficult to realize and implement. This basic issue of 
implementation of parallel computing algorithms can be 
handled effectively by Multicore architecture. 
 

Multicore processors have a higher edge on single core 
processors in terms of various parameters like processing 
speed and computational time. The increase number of counts 
achieves the reasonable performance of the programming 
models for the need of multi-thread working in union with 
multicore. But as we increase the number of cores the power 
for each core also increases resulting in large power 
utilization. Power consumption is one of the major issues that 
needs to be resolved for efficient implementation of multicore 
architecture. With increasing performance minimizing the 
power consumption is crucial. Thus on architectural basis, we 
propose a new model based on both DVFS & heterogeneity 
which can be incorporated to reduce power consumption 
considerably while still maintaining overall performance drop 
under tolerable limits[3][4][6]. 

 

2. ARCHITECTURE AND BACKGROUND 
2.1 Conventional Multicore Design 

 
Fig. 1 Conventional Multicore Architecture. 

 
This Fig. 1 shows the basic conventional multicore model. 

It contains homogeneous core which are same in size and 
configuration. This homogeneous core processes data 
irrespective of their variable complexity with similar 
computational processing. The supply voltage and operating 
frequency are also similar throughout the core. As the number 
of core increases the amount of power also increase resulting 
in large power consumption and heat dissipation[9][10].  
 
Different schemes to reduce power are: 

1) Dynamic Voltage & Frequency Scaling [DVFS] 
 

DVFS is one of the common power management 
techniques. Complex workload need high speed and 
supply voltage for computation compared to simple 
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instruction. The overall power [P] mainly depends on 
supply voltage [V] and operating frequency [F] which is 
given as P = CV2F. Therefore by scaling voltage and 
frequency with respect to workload, power can be 
reduced. 

Multicore offers individual DVFS for each core, this is 
referred to as per-core DVFS (PC-DVFS). Per-core DVFS 
has extended flexibility in controlling power.  Power has 
its own primary performance problem in high-
performance computing (HPC). Thus reducing power 
consumption, lead to significant reduction in the energy 
required for a computation, particularly for memory-
bound workloads[8]. 

  
2) Heterogeneity  

 
Heterogeneity is the technique in which the 

configurations of the processing cores are modified 
based on the task incorporated. Increase in core size 
results in large power dissipation. Therefore using 
heterogeneous core, the core configuration are modified 
according to the given complex or simple task resulting 
in comparatively low power consumption.     

Heterogeneous multi-core processor architecture can 
expand the features for powerful computing to provide 
system acceleration. They currently offer an efficient and 
powerful integrated processor moreover it also supports 
data parallelism, bringing several innovative changes in 
functionality of the system[2][7][5]. 

 
2.2 Modified Design 

 

 
Fig. 2 Modified Architecture. 

 
This Fig. 2 illustrates the modified model using DVFS 

and heterogeneity technique together for the efficient power 

management of the processing unit. Parameters like size of the 
processing core, supply voltage and operating frequency are 
made flexible in order to minimize power dissipation 
compared with conventional multicore design. In order to 
implement this modified multicore design, graphite multicore 
architecture is reliable and efficient for implementation.  
 
 
 

3. IMPLEMENTATION 
3.1 Simulation Environment  

 

 
Fig.3 Graphite Architecture. 

Graphite is an open source API (application program 
interface) used to explicitly direct multithreaded, shared 
memory parallelism, for distributed simulator infrastructure 
designed to enable rapid high-level architectural evaluation 
and software development for future multicore architectures. 
Graphite multicore architecture is used on multicore 
simulator, designed to boost the power and process in 
parallelism for multicore engine. It provides both functional 
and performance modelling for cores, on-chip networks and 
memory subsystems including cache hierarchies with full 
cache coherence. 
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Fig. 4 Target Architecture. 

This Fig. 4 illustrates the various components present in 
the target architecture. This target tiled multicore architecture 
is a thread executing units which are based on multithreaded 
application. There are various target architecture components 
such as: 

1) Tiles: It contain a processing core, network model 
and memory components. 

2) Core: Basic processing unit for modelling 
multithreaded application. 

3) Memory model: Flexible model responsible for the 
memory subsystem, which is composed of caches 
and DRAM at different levels. 

4) Network model:  Networking model based on 
routing of packets over the on-chip network and 
accounts for various delays encountered due to 
contention and routing overheads[1]. 
 

3.2 Algorithm  

A. IMAGE AVERAGING FILTER 
Image filtering is one of the most commonly used 

techniques of image processing & enhancement. 
Neighbourhood processing is prominent concept in image 
that enables us to extract & modify the image itself as per the 
requirement. 

Image filtering is based on mathematical concept of 2D 
spatial convolution that is carried out on pixel intensities. 
Average filtering is one of the most commonly used filters 
that is utilized to add blurring effect on image as well as to 
enhance the edge detection.  
 

 
Fig. 5 Two Dimensional Convolution. 

 
Fig. 5 explains clearly about how the filtering operation is 

carried out in spatial domain. For mask of size m x n the 
averaging filter technique can be represented mathematically 
as, 

 

𝑔(𝑥, 𝑦) =  � � 𝑘(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)
𝑏

𝑡 = −𝑏

𝑎

𝑠 = −𝑎 

 

 
 
Here, m = 2a + 1 & n = 2b+1 with a and b as positive integers. 
K(s,t) = Averaging kernel matrix  
Average filter kernel of size m x n can be represented as, 
 

𝐾𝑁 =  1
𝑚𝑛

�
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

�
𝑚 𝑥 𝑛

 

 
 
It is assumed that the kernel coefficient k(0,0) is aligned with 
centre of the pixel under consideration as. 
 

a. First at the edges of image zero padding is done then 
appropriate mask is applied for each & every pixel in 
image 

b. 2D convolution is achieved by multiplication & 
addition of weighted neighbourhood values and 
value of pixel under consideration is replaced by 
output of the convolution. 

c. Mask is then sheeted row-wise or column-wise and 
filtering is carried out by processing same steps as 1 
and 2 over entire image. 
 
 
 
 

B. IMAGE AVERAGING ALGORITHM 
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Fig. 6 Image Filtering Algorithm. 

 

 This Fig. 6 illustrates the image averaging filtering 
algorithm as an application on graphite multicore 
architecture. There are 2 different size images considered such 
as 786x786 and 1024x1024 for image averaging application. 
Each image is divided into row by row equivalent to the 
number of threads allocated. Each thread is given to each core 
for processing and is retransformed into image with 
averaging. The process can be explained below  

a. Read an image.  
b. Divide image into N number of threads. 
c. Distribute these threads into the cores. Cores are 

generated corresponding to the amount of threads. 
Each thread is responsible for processing included in 
its core 

d. Threads are processed by applying average filtering 
to them. 

e. These Processed threads are given to thread barrier 
for the reconstruction of the image. 

f. Reconstructed image is written in the memory. 
 
 
 

C. Implementation in Graphite  
 

This Fig 7 illustrates the graphite multicore architecture 
while executing image average filtering algorithm based on 
the modified design that is combining DVFS and 
heterogeneity. The executions on graphite multicore in 
various phases are as follows: 

 

 
Fig. 7 Graphite Implementation. 

 
1) The execution starts with the main core where the 

image is read. Here the supply voltage and operating 
frequency is high. The slave cores are inactive.  

2) At the time of filtering, the slave cores become active. 
The voltage and frequency are made less with the 
slave cores having half the size of the main core 
because the processing part in comparatively less.  

3) After filtering, the slave cores become inactive. The 
image is write back and the main core stops 
execution.  

 

4. RESULTS 
Results are generated based on Graphite simulation with 

following assumptions: 
 

• Infinite DRAM storage 
• Negligible DRAM access latency 
• Negligible latency during core switching ON or OFF 
• Negligible loss of power in connecting network 
• Latency while switching voltage & frequency is 

negligible. 
• Completion time for program is assumed to be equal 

to maximum time taken by core to complete given 
task 

 
Following specifications are maintained while performing 

simulation: 
• Technology node – 45nm 
• Temperature  - 300 K 
• Maximum operating frequency  - 2.0 GHz 
• On chip voltage regulator separate for each tile. 
• Range of number of cores used  - 2 to 32  
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For performance analysis of modified architecture basic 
parameters that are observed are processing time & power 
consumed by entire architecture. Processing time is direct 
measure of performance while power consumed represents 
power efficiency of system. 
 

Variations of both parameters that is Processing time & 
power with respect to change in number of cores used with 
different frequencies and different images. Following images 
are considered for performance analysis.  

 
 
 

 

 

Fig. 8.1 Windmill [Size: 786x786]. 
 

 

Fig. 8.2 Boat [Size: 1024x1024]. 

 
 
Two scenarios are considered while making simulative 
analysis. 
 

1) Normal scenario that Describes execution under 
following specification : 

• All executing cores are equal i.e. having same 
operating frequency of 1GHz   

• Same cache size viz. 
 L1 I-cache size = 16 KB 
 L2 D-cache size = 32 KB 
 L2-cache size = 512 KB 

 
2) Modified scenario that describes execution under 

following specification 
• Only main core remains as it is & operating at 

frequency fs = 1Ghz 
• Slave cores operating at frequency fs =0.65 GHz 

or fs=0.77 GHz 
• Size of slave cache 

 L1 I-cache size =16 KB 
 L2 D-cache size =16 KB 
 L2-cache size =256 KB 

 
 
 
A. Following graphs represents time & power variations 

with respect to number of cores used for different images 
& frequencies. 
 

1) For Windmill Image 
 
• Power & Time graph at slave frequency fs=0.77  GHz 

 

 

Fig. 9.1 Power Dissipated Vs Cores for Windmill Image at fs = 0.77. 
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Fig. 9.2 Processing time Vs Cores for Windmill Image at fs = 0.77. 

 
 

•  Power & Time graph at slave frequency fs=0.65 GHz. 
 

 

Fig. 10.1 Power Dissipated Vs Cores for Windmill Image at fs = 0.65. 

 
 

 

Fig. 10.2 Processing time Vs Cores for Windmill Image at fs = 0.65. 

 
 
 

2) For Boat Image 
 

• Power & Time graph at  slave frequency fs=0.77 GHz 
 

 

Fig. 11.1 Power Dissipated Vs Cores for Boat Image at fs = 0.77. 
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Fig. 11.2 Processing time Vs Cores for Boat Image at fs = 0.77. 

 
 
• Power & Time graph at  slave frequency fs=0.65 GHz 

 

 

Fig. 12.1 Power Dissipated Vs Cores for Boat Image at fs = 0.65. 

 
 

 

Fig. 12.2 Processing time Vs Cores for Boat Image at fs = 0.65. 

 
 

B. Comparing all statistical data with simulation under 
normal execution & following graphs represent 
percentage variation in parameters as compared to 
Normal execution. 
 

1) For Windmill image 
 

• At Slave Frequency fs = 0.77 GHz.  
 

 

Fig. 13.1 Percentage variation Vs Cores for Windmill Image. 

 
 
 
 
 

 
• At Slave Frequency fs = 0.65 GHz 
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Fig. 13.2 Percentage variation Vs Cores for Windmill Image. 
 

 
 

2)  For Boat Image  
 

• At Slave Frequency fs = 0.77 GHz  
 

 

Fig. 14.1 Percentage variation Vs Cores for Boat Image. 
 
 
 
 
 
 
 
 
• At Slave Frequency fs = 0.65 GHz 

 

 

Fig. 14.2 Percentage variation Vs Cores for Boat Image. 

 
 

5. CONCLUSION 
Conclusions are drawn on basis of following perspective: 
 

1) Effect of Computational load: The performance of 
multicore architecture is completely dependent on the 
computation load only. Contents of data to be processed 
becomes irrelevant as simulation computes same 
resource utilization for different data of similar 
computational load 

2) Processing time: Exponential decrease in processing 
time is observed as number of processing cores 
increases. Whereas with decrease in operating 
frequency, it is evident that processing time also 
increases by smaller extent. 

3) Power consumption: There is linear increase in power as 
we increase number of cores. Whereas with decrease in 
operating frequency of slave cores power reduces by 
great extent. 

4) Multicore perspective: With architecture of small 
number of cores, modified technique shows 
deterioration in performance. But when it comes to 
many-core architecture extensive power savings upto 
20% can be achieved while allowing only 5% tolerable 
loss of performance (increase in processing time). 
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